
Multiple Master Math Extension Fonts

D. Men’shikov, A. Kostin, M. Vulis
MicroPress, Inc.
68-30 Harrow Street
Forest Hills, New York, 11375, USA
Phone: 1 (718) 575 1818
Fax: 1 (718) 575 8038

support@micropress-inc.com

http://www.micropress-inc.com

The traditional approach

The extensible glyphs in TEX are composed out of
several smaller characters, and, in some cases, rules.
The construction itself is carried either by code in-
side the TEX compiler itself, using the special infor-
mation in the .tfm files, or by macros, implemented
as part of the format.

An example of the first situation is the con-
struction of large delimiters, for example, brackets.
Here, a vertical segment in inserted to stretch the
delimiters vertically:

〈〉

Figure 1: Vertical delimiters

One of the shortcomings of the extensible char-
acters is that some character shapes do not lend
themselves to the insertion of extension pieces; thus,
the angular brackets are non-extensible, and, when
used to encompass a large formula, would not scale
to the required size. For example, typing

$\left< \vrule width 1cm height 1cm \over
\vrule width 1cm height 1cm \right>$

results in

〈 〉

rather than in the anticipated〈 〉
A variant of the situation is the TEX’s treat-

ment of the radical symbol: the construction is ac-
complished by the TEX program itself, but while the
vertical extension is driven by the .tfm information,
the horizontal bar is supplied by the TEX program
itself; and in this case the bar is a rule, rather than
an extension character.

√

√

√

√

√

√

√

√

Figure 2: Radical delimiters

In the above picture, the rule component is
shown filled.

The problem with the use of rule components
in building a composite symbol is that rules are sub-
jected to different roundoff rules than characters. In
the prehistoric days of DVI files and bitmap fonts,
these roundoff errors could be in principle handled
by careful calculations within the TEX program and

TUGboat, Volume 0 (2060), No. 0 — Proceedings of the 2060 Annual Meeting 1001

D. Men’shikov, A. Kostin, M. Vulis

the DVI driver; but in the modern world of scal-
able fonts and PS/PDF targeting this becomes an
impossibility.

The picture below shows a snapshot of square
root constructed by PdfTEX:

The underlying TEX code was
$ \sqrt{\vrule height 2cm width 2cm} $

Depending on the magnification used in the PDF
previewer, or resolution of the output device, the
rule may be thinner, or thicker, or above, or below
the part of the sqrt glyph it is supposed to connect
to smoothly. And, sometimes, it would fit correctly.

The root of the problem here is that glyph round-
ing is subject to the font hinting, while the thickness
and positioning of rules is not well controlled by the
PS/PDF rendering.

The second type of extension mechanism is via
TEX macros; this is typically used to construct long
horizontal symbols, as done by commands similar to
\underbrace:

︸ ︷︷ ︸

Figure 3: Underbrace extension

Once again, we get mismatches in the width
and positioning of the connecting rules comparing
to that of the symbols used in the middle and at the
ends of the long brace. A snapshot:

The third problem with extensible characters
is that sometimes (usually, in slides) it is desirable
to outline, or shade characters; this cannot be done

correctly with composite characters. In fact, the
diagrams above that show the structure of extensible
characters, are unintended output of an attempt to
stroke extensible symbols, making them suitable for
this article, but not for a use within a slide.

Summarizing, we have identified three separate
problems with the TEX approach to the extensible
symbols:
• Impossibility to correctly scale some of the de-

limiters (angular brackets, for example).
• Impossibility to correctly align rules and char-

acters.
• Impossibility to correctly stroke or shade com-

posite symbols.

All these problems can be solved, however, if
we switch to a different mechanism of constructing
large symbols: multiple-master fonts.

Multiple Master Fonts

For those unfamiliar with the MM fonts, they repre-
sent a PostScript World answer to MetaFont. Just
like MetaFont allows creation of different designs
from the same font program, so does the MM tech-
nology. While MM fonts are less flexible than Meta-
Font, they are easy to use, and the output of MM
font instancing is a ready-to-use Type 1 font, whereas
a generic MetaFont emits obsolete bitmapped fonts.

Additional information on the MM fonts can be
found in the Adobe Technical Specification #5015
“Type 1 Font Format Supplement”.

The Multiple-Master (MM) Font technology was
introduced by Adobe in 1991; the first description of
the MM technology appeared in the PC Week article
of the March 11, 1991 issue. The first MM font was
Myriad (1992), with two axes: weight and width.

Since 1992 Adobe designed at least 36 MM font
families with 99 fonts. Perhaps the most successful
was the Minion family.

While Adobe originally intended to include MM
in the OpenType specifications, this effort has been
abandoned, and Adobe stopped making new MM
fonts. The last Adobe’s MM font, VerveMM, was
designed in 1998; Adobe had announced that it was
giving up on the MM technology at the 1999 ATypI
Congress.

Despite the abandonment by Adobe, MM fonts
represents a very convenient technology for use in
typesetting applications like TEX. While MM func-
tionality is not supported within PDF documents,
instances of MM fonts are, and the entire MM font
can be made available to the TEX document.

VTEX has supported MM fonts since 2001, and
the use of MM fonts in math extension fonts merely

1002 TUGboat, Volume 0 (2060), No. 0 — Proceedings of the 2060 Annual Meeting

Multiple Master Math Extension Fonts

builds up on the existing MM support; we will start
with outlining the existing support.

VTEX recognizes MM fonts by the name of the
font; a font name that includes the bracket character
is assumed to be an instance of a Multiple Master
font. This does not represent much of a restriction
on the font name selection, since use of brackets in
file names is not common and is not legal on some
operating systems.

The left bracket in the font name is followed by
the instancing parameters. For example, in

\font\sm=xo______
\font\mm=xo______[300,10]

the \sm \font declaration defines the default shape
of the Multiple Master CrononMM font; this is the
“normal” way to use the typeface. The second dec-
laration, however, defines an instance of this MM
font to be constructed dynamically.

In the above example, the first definition makes
VTEX to load the usual TFM metrics file, namely
xo______.tfm; the second declaration causes VTEX
to load the Multiple font Metrics file xo______.mfm
and generate the instance metrics on the fly. Be-
cause of the use of .mfm files providing metrics file
for each instance becomes unnecessary.

In some MM fonts, all the instances of the font
have the same metrics; if so, it is possible to use the
ordinary .tfm file. In most MM fonts, however, the
metrics of different instances is different, and this
made the development of the new metrics format
necessary.

Upon seeing a MM font used in the document,
VTEX compiler would automatically use the build-
in PostScript interpreter (GEX, see [1]) to instance
it; since the instancing is done by a PostScript ex-
ecution, the instance font is always built correctly;
and the TEX compiler automatically packs it into
the output PDF file.

For example, the following TEX code would pro-
vide a set of instances of the Minion font (TM).

Additional details on the MM support can be
found in the mmsupp.pdf document in VTEX distri-
butions.

Math Extension Multiple Master Fonts

Supporting Math Extension MM fonts requires sev-
eral additional steps.

Firstly, such fonts need to be developed them-
selves; currently such fonts exist: cmex10mm and
paex10mm. The first is intended for use with Com-
puter Modern fonts, the second with the alternative
PaMATH set, available from MicroPress.

Math Extension MM fonts include symbols for
vertical delimiters, long horizontal symbols (like the
ones constructed by the \underbrace macro), and
the radical symbol. Since the radical requires two
MM axes, the entire font is a two-axes MM font,
even if the majority of symbols are actually “one-
dimensional”.

Specific sizes of delimiters can be constructed
by loading the font with different instancing param-
eters. For example, for the \overbrace symbol, we
can try font commands like
\font\f=cmex10mm[30,100] \f \char"7A
\font\f=cmex10mm[30,300] \f \char"7A
\font\f=cmex10mm[30,500] \f \char"7A
\font\f=cmex10mm[30,700] \f \char"7A
\font\f=cmex10mm[30,900] \f \char"7A

obtaining the shapes
100: ︷
300: ︷
500: ︷
700: ︷
900: ︷

(Only the second instancing parameter is used in
long horizontal symbols.)

Notice that the symbols are built from single
glyphs and thus do not suffer from the problems
listed at the beginning of this paper.

Since TEX supports overbrace and other long
horizontal symbols entirely through macros, switch-
ing TEX to supporting MM instances instead re-
quires only changes to the macros. One of the tasks
of the mathexmm style is to therefore redefine these
macros.

Supporting vertical delimiters and radicals re-
quires more radical changes: the .tfm mechanism
of extensible characters needs to be replaced by an
MM alternative. We accomplish this as follows:

Firstly, we prepare an alternative metrics file,
cmex10m, which is mostly equivalent to cmex10, ex-
cept that
• The encoding specified in the .tfm must be
MMEXTENSION; this is the signal to the TEX com-
piler that what normally would be interpreted
as exten instructions in the .tfm instead should
be seen as pointers to MM glyphs. (It is unfor-
tunate that the .tfm syntax does not provide
any space for new flags; this is what forces us
to use the comment field.) In a .PL file, this
would appear as
(CODINGSCHEME MMEXTENSION)

• Each exten specification in the .tfm is replaced
by the glyph number of the character to use in

TUGboat, Volume 0 (2060), No. 0 — Proceedings of the 2060 Annual Meeting 1003

D. Men’shikov, A. Kostin, M. Vulis

the cmex10mm MM font. For example, whereas
the cmex10.pl listing contains

(CHARACTER C 0
(CHARWD R 0.875003)
(CHARHT R 0.039999)
(CHARDP R 1.760019)
(VARCHAR

(TOP C 0)
(BOT O 100)
(REP C B)
)

)

specifying that the character 0 is to be built
from glyphs 0, ‘100 and B; in cmex10m.pl we
set

(CHARACTER C 0
(CHARWD R 0.875003)
(CHARHT R 0.039999)
(CHARDP R 1.760019)
(VARCHAR

(REP O 303)
)

)

which means that the character 0 is to be built
as an instance of the glyph ‘0303 in the corre-
sponding MM font (cmex10mm).
cmex10 and cmex10m are otherwise identical.

The mathexmm style, when used, would load the
cmex10m font instead of cmex10. Unless extensible
characters are invoked, it would function in exactly
the same way as cmex10; by when TEX is about to
build an extensible character, it would instead build
an appropriately-sized instance from the cmex10mm
MM font.

From the point of view of the user, this is all in-
visible, and no action is required except for adding
\usepackage{mathexmm} in the document pream-
ble for LATEX 2ε, or \input mathexmm for Plain TEX
and AmSTEX.

Acknowledgement

Related ideas previously appeared in [2]; they, how-
ever, did not add up a practically usable implemen-
tation as has been done in this work.

Bibliography

[1] A. Kostin & M. Vulis, “Mixing TEX and Post-
Script: The GEX Model”, in TUG 2000 Confer-
ence Proceedings.

[2] J. Andrè & I. Vatton, “Dynamic optical scal-
ing and variable-sized characters”, in Electronic
Publishing, Vol. 7(4), 231-250 (Dec 1994).

1004 TUGboat, Volume 0 (2060), No. 0 — Proceedings of the 2060 Annual Meeting

	The traditional approach
	Multiple Master Fonts
	Math Extension Multiple Master Fonts
	Acknowledgement
	Bibliography

