81 02 LICENSE 1

1. License.
Gened date: January 30, 2015
Copyright (© 1998-2015 Dave Bone

This Source Code Form is subject to the terms of the Mozilla Public License, v. 2.0. If a copy of the
MPL was not distributed with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

2 SUMMARY OF O — YACCO3’S NICKNAME 02 82

2. Summary of O; — Yaccos’s nickname.
The compiler / compiler’s formal name is Yacaoo but call me Os. Yacz02 can be morphed many ways; here
are some hints: sound of a cold, molecular contortions. Do your own expletives.

3. Component overview running Os.

I use a “lex” extension to distinguish a grammar file. This is not hard coded. You can choose your own
memory mnemonics for any of my files. The “.T” file extension identifies the Terminal vocabulary. Its
components are described later in the document. The Lrk and Rc terminals are pre-assembled and reside in
the “/usr/local/yacco2/library/grammars” account. My original thought was to allow the compiler writer
to experiment with his own terminal definitions for all classes: LR constants, raw characters, errors, and
terminals. From experience, only the last 2 classes are local to each language being defined.

“options: | > xxx.lex grammars|< ~~~~~~~ | Terminal vocabulary

|Xxx,tracings.log|- - | Og] -
v

|xxx[,sym,tbl].cpp ﬁles| | T-Alphabet and xxx.fsc files | ~~~~~~~ >| yyy.fsc Oslinker make file

> doc. files of xxx.[mp,w] for mpost, cweave Oslinker

Oslinker tables
|

o

| >~ dispatch threads table, grammars’s Irl tables, each fsm and rhs procedure

Please note, the “header” files are absent from the diagram due to space constraints. The salient ones
to note are:

1) the enumeration of the vocabulary’s symbols

2) headers for fsm, and the terminal classifications: Irk,error,rc,and T
Per compiled “xxx.lex” grammar, the 2 status files “xxx_tracings.log” and “xxx_errors.log” hold the text-only
compiled results lodged within the local grammar’s folder. “T-Alphabet” gets gened when the “-t” option
is inputted to gen the Terminal vocabulary. It is a file by defined order of all the terminals’s literal names
used as comments against the outputted lookahead tables to make sense of their compressed set definitions.
Its file name is built from the grammar’s “T-enumeration” construct using its filename and adding a “.fsc”
extension. OY"keTcross checks the number of terminals defined in the “no-of-T” value in each grammar’s
“fsc” file against this file. Out-of-sync values indicates that new terminals have been added to either the
“error” or “terminal” class terminals vocabulary without gening up the grammar with the “-t” and/or “-err”
option(s). The “yyy.fsc” file is the grammar writer’s handcrafted file containing references to these “xxx.fsc”
files and the T-Alphabet file for OY"*¢"to compile. Its name can be anything but i use the “.fsc” as a memory
jog. Please see O5™k¢"’s documentation on its raison d’étre and make file comments.

84 02 TRACING FACILITIES 3

4. Tracing facilities.
Some of the more important tracing facilities are as follows where their mnemonic replaces the “xx”:

TH — dynamic trace of the grammar’s parse stack when its “debug option is true

T — trace terminals fetched across all grammars

AR — trace arbitration when grammar’s debug switch is true

MSG — dynamic threading messages between the co-operatives
Please see Oy’s library documentation concerning each tracing variable when set to 1 within your program by
the programmer: “yacco2:YACCO2 xx__ = 1;” starts their specific scribblings. There are other less impor-
tant trace variables not listed above. The turned on Os’s library trace facility will log to “xxx_tracings.log’
file where ‘xxx’ represents the grammar being parsed without its extension. As the “xxx_tracings.log” is
text-only content, this allows the use of a general text editor to browse its material. If the editor has indi-
gestion due to its volume, a script can be written to postprocess it for study by the “sed” / “grep” combo
or using just the “split” utility.

5. Grammar anatomy.

The grammar is composed of your traditional components: start rule, non-terminal vocabulary, terminal
vocabulary, and 2 additional parts: fsm and syntax directed code. “fsm” (short for finite state machine) is a
packaging agent. It houses all the grammar’s software generated parts along with the c++ syntax directed
code within the grammar associated with their directives. These directives are local to the grammar’s rules,
subrules, and possibly the grammar’s start-run-finish sequence that is handled within the fsm. “fsm” supplies
the grammar’s c++ namespace, class name, and filename prefix to output the components to.

6. Terminal vocabulary.

From the diagram below, the “enumeration” component is a packaging agent that receives the outputed enu-
meration definitions for each terminal class. The counting scheme uses the natural numbers starting from
0 listing the “Irk” constants, followed by each of the other components’s terminals. The last component
“terminals” is your regular terminal definitions that gets assembled from the lexical or syntactical passes,
and possibly out into etherland of abstraction. All vocabulary elements are tagged this way. It is the glue
to all the emitted tables. For the record, each grammar’s non-terminal vocabulary (rules) are enumerated
after the terminal enumeration count and are defined within the grammar’s fsm class definition. The rules’s
subrules are also enumerated and defined there. They are not dependent on the Terminal vocabulary.

| Terminal vocabulary |

I ! }

| enumeration | |Irk meta-terminal constants | |raw characters | | terminals | |errors |

4 OVERVIEW OF GENERATING THE GRAMMAR’S PDF AND POSTSCRIPT(PS) DOCUMENTS 02 87

7. Overview of generating the grammar’s pdf and postscript(ps) documents.
There are 2 generated documents using the “-p” option emitting “cweave” content and associated “mpost”
diagrams for compilation:
1) grammar with its syntax direct code,
emitted Oslinker file, and gened Irl state network
2) various cross references against the grammar, and Irl state network
- symbols used from each rule’s subrules symbol string position
- additional information supporting the Irl state network in the 1st document
e each Irl state’s rules follow sets
e reducing states subrules with references to their contributors’ follow sets
e global lookahead sets with their yield used by the parse reduce operation
The below diagram shows the manufacturing of a grammar’s document.

|xxx.mp for mpost | - >| xxx.w for cweave|

|Z railroad diagrams of grammar|~ -

cweave

“a pdf reader”

Also for each “pdf” document generated there is a postscript document to remove the dependency of a
“pdf reader” and its “gui” interaction when wanting to spool the document for print. For example on
my Sun Solaris, the program “pdftops” takes a “pdf” document and creates an equivalent “ps” document.
Spooling it to a print would use the command line “Ip xxx.ps”.

88 02 A SAMPLE Oy SCRIPT WHERE THE OPTIONS ARE DESCRIBED 5

8. A sample O; script where the options are described.
O’s input data template is [options] filename where options are optional as they have preconfigured values.
Here are the switches that can be inputted to Os using the Unix approach to turn on the specific option.
Each option must be inputted with its own — sign.
Options: if they are not present, do not generate

1) -t — generate the Terminal vocabulary

2) -err — generate the Error vocabulary

3) -Irk — generate the Ir k vocabulary: Deprecated not supported

4) -rc — generate the Raw characters vocabulary: Deprecated not supported

5) -p — generate the grammar’s documents
Points 1 and 2 are usually stable and do not need to be gened. Do so when these vocabularies have been
modified. Don’t forget to regen all the grammars and re-run Oslinker to reprocess the “fsc” files if the
number of Terminals in the vocabularies has changed as all the Lookahead sets are now different along
with the enumeration scheme that ties them together. Points 3 and 4 cannot be used as they reside in
“/usr/local /yacco2/library /grammars” pregened. I included them as a memory jog to my experiments; if
u try to input these deprecated options u’ll get an error message. Other options were experimented with
but found boarderline marginal: gen namespace, gen the grammar, and turn on debug of grammar instead
of using the editor cycle to modify the grammar to be traced. Now namespace and grammar are always
generated, and hello editor. So out damn spot.

Here is a batch command file that runs on a Microsoft’s NT/XP desktop. The same can be done within
a “Unix” flavour script language like “Bash”. Though it does not illustrate a conditional test as to whether
the script should continue when the grammar is faulty, Oz returns a 0 to indicate a healthy grammar and a
1 to indicate a sick grammar: The gory details are in the error log.
1: rem file: o2.bat

rem compile 02 grammars
cd \yacco2\compiler\h2o\release
Q@echo ON

02 -p -t -err /yacco2/compiler/grammars/enumerate_grammar.lex
mpost enumerate_grammar.mp

cweave enumerate_grammar.w

pdftex enumerate_grammar

© 00 ~NO U WN

10:

The above example uses line numbers delimited by at the start of each line for commentary purposes.
Line 3 sets the directory where Oy resides and repository for the temporary files from Oz, “mpost” that
draws the grammar diagrams, while “cweave” generates the “xxx.tex” file for “pdftex” who completes the
document for an “Adobe” reader program: for example “xpdf” of open source or Adobe’s reader. “cweave”
is one of the programs by Donald E. Knuth and Silvio Levy from their book “The CWEB System of
Structured Documentation”. Go to the web site “www.tex.org” for more information on how to obtain
“CWEB?”. The same comments apply to “mpost” written by John D. Hobby of ‘Bell Labs”. This is a remake
of “MetaFont”language / “MetaPost” program by Donald E. Knuth. These programs are grrrreat! More
people should be using them. The emitted grammar files get placed in the same directory of the inputted
grammar to Os.

Line 6 runs Oy with its inputted grammar file “/yacco2/compiler/grammars/enumerate_grammar.lex”
and switches to gen up the Terminal and Error vocabularies and gen a printed set of documents. Os also
generates the documentation files “enumerate_grammar.mp” and “enumerate_grammar.w” files. Lines 7—
9 are command lines to create the output document. In the example, “enumerate_grammar.pdf” is the
final file document for printing. “enumerate_grammar.xx” are figure files generated by mpost from file
“enumerate_grammar.mp”. These files are referenced in the “enumerate_grammar.w” file by cweave who
produces an “enumerate_grammar.tex” file for program pdftex. All this to say that there can be many
generated files before the document is complete. Please note the other cross reference document is not
shown but follows the same run pattern.

“.”

6 SOME DEFINITIONS 02 §9

9. Some definitions.

Non-terminal:

This is your normal grammar definition. I interchange this term with “rule”. They are the same. Depending
on the context, i also use rule in the same sense of a grammar’s production. To refine the context, the term
“subrule” indicates one of a rule’s productions.

Subrule:
Equivalent to a grammar’s production. It is one of a rule’s right-hand-side string of symbols drawn from the
non-terminal or Terminal alphabets. The string can be empty indicating epsilon.

Please see the mavelous book “Formal Languages and Their Relationn to Automata” by Hopcroft and
Ullman for a complete discussion on grammars and their makeup. Excellent reading for a 1968 vintage on
automata.

Here are some basic definitions used by my Irl generator.

First set:

Please see first_set_rules.lex grammar for a more thorough discussion. First set is the set of terminals that
begins a string of symbols. When the symbol is a rule, then all its subrules contribute to the first set.
This is a recursive definition as the rule’s subrules can also bring in other rules’ subrules string of symbols
that contribute to it. If the string’s start symbol is a rule and its epsilonable, then its right neighbour also
contributes. Again if its a rule and epsilonable its right neighbour is a contributor: ahh recursive definitions.

Follow set:

The rule’s first set of production strings to the right of a Ir state’s configuration. Here is a simple arith-
metic grammar to illustrate follow sets for the “Closure-only” state where all production strings have their
configuration position at their very beginning illustrated by ” ”. I use a form of Dewey decimal notation to
reference the production’s configuration. For example “E.1.2” means the production of rule “E” referencing
subrule 1 of its second symbol is being refered to. In this example below the referenced symbol is +. How
follow sets are arrived at is discussed in “Overview of Os’s state generated components”.

Rule subrule’s symbols
S - EL
E —- E+T
— T
T — TxF
— F
F - (E)
— id
Rule follow set R.SR.Pos of follow set with transitions
E 1+ 1 by S.1.2, 4+ from E.1.2 L+
T E.2.2
T * x by T.1.2 * 1+
T T.2.2
F] x 1+

Table of follow sets for the “Start state” of the above grammar

89 02 SOME DEFINITIONS 7

There are 3 subtleties that are watched for in the follow set calculation:

1) rule symbol — use its “first set”

2) epsilonable rule symbol — continue to next symbol in follow string for assessment

3) end of symbol string reached — transition
Point 3 requires some explanation. Its condition means that the rule’s right-hand-side has been consumed
(or is epsilon) so what’s it follow set? Nothing? No it’s the subrule’s rule that spawned it that provides
more follow set context. This context resides in the “closure” state of this rule. So now there is a transition
to this rule’s follow set. This is the transitive closure of spawning contexts. The Table of follow sets shows
these transitions with the 1 symbol. Epsilon rules are chameleon in nature: they supply their first sets and
also disappear and so u must continue to the next symbol in the follow string to complete the follow set
while observing the end-of-string condition to follow its transitions.

8 CATALOGUE OF O5’S FILES 02

10. Catalogue of Oy’s files.
Cweb Documents:
1) Yacgoo parse library
2) Ogextern — external routines
3) Yacg0astbl — symbol table
O5’s Input files to cweb:
1) 02.w — master file that starts things off
2) intro.w — introduction
3) defs.w — basic definitions to gen Irl network
4) prog.w — Og cweb code
5) bug.w — confessions
6) 02_defs.w — details
7) includes.w — bring in those grammars for the parsing
8) oZexterns.w — external routines
cweb generated files:
1) 02.h — compiler definitions
2) 02.cpp — O4 program
3) 02_defs.cpp — structure implementations
4) 02_externs.h — global definitions used across Os’s source code
O3’s generated files where xxx is the grammar’s name being compiled:
1) azz.fsc — grammar’s first set confessions for Linker
2) zzxz.h — grammar’s header file
3) xxz.cpp — automaton code
4) zzxsym.cpp — automaton symbols
5) zxxtbl.cpp — automaton’s state definitions
Yacq09 library memorabilia:
1) yacco2 — library namespace
2) “/usr/local/yacco2/library” — yacco2’s library directory
3) < yacco2.h > — Yacco2’s library header file
4) “library directory/xxxx” - xxxx is the debug or release of the object library
Dependency files from Yacy0o sub-systems:
yacco2.h - basic definitions used by Yacco2
yacco2_T_enumeration.h - terminal enumeration for Yacco2’s terminal grammar alphabet
yacco2_err_symbols.h - error terminal definitions from Yacco2’s grammar alphabet
yacco2_characters.h - raw character definitions from Yacco2’s grammar alphabet
yacco2_k_symbols.h - constant terminal definitions from Yacco2’s grammar alphabet
yacco2_terminals.h - regular terminal definitions from Yacco2’s grammar alphabet
x. h - assorted grammar definitions from Yacco2 to parse
02_externs.h - external support routines for Og
Grammars
pass3.lex — lex and syntactic phase of grammar
la_expr_source.lex — lexical phase of lookahead expression
la_expr.lex — syntactic phase of lookahead expression
enumerate_T_alphabet.lex — logic grammar to assign each T a number from 0..n
epsilon_rules.lex — grammar determines epsilon per rule and pathological conditions
first_set.lex — logic grammar to calculate each rule’s first set
prt_fs_of rules.lex — logic grammar to print each rule’s first set
enumerate_grammar.lex — dump aid: enumerate grammar’s components
Globals
LR1_STATES — list of gened Irl states
LR1_COMMON_STATES — common states map having same vectored into symbol
START_OF_RULES_ENUM — used in shift / reduce conflict evaluation

§10

810 02 CATALOGUE OF O3’S FILES 9

Comments:
My external routines use the all upper case approach to names. I know it’s like shouting but it clues the
reader where the heck the routine comes from. I could have tempered the all caps approach to a capital
letter but i’'m myopic and becoming visually golden in age. So my excuses to the reader for this tasteless
approach.

10 0O5’S LANGUAGE

11. O3’s language.

o2 8§11

There are 3 languages that are actually parsed: 2 in preparation — command line and its contents, and the

grammar file. A grammar is divided into 4 parts:
a) Finite automaton definition — basic statements about the grammar
b) Parallel parse that defines a threading grammar
¢) Terminal vocabulary: errors, Ir k, raw characters, and terminals
d) Rule definitions
1: /%
2 FILE: eol.lex
3 Dates: 17 Juin 2003
4: Purpose: end-of-line recognizer
5: %/
6: fsm
7 (fsm-id "eol.lex",fsm-filename eol,fsm-namespace NS_eol
8 ,fsm-class Ceol
9: ,fsm-version "1.0",fsm-date "17 Juin 2003",fsm-debug "false"
10: ,fsm-comments "end of line recognizer")
11: parallel-parser

12: (

13: parallel-thread-function

14: TH_eol

15: *ok ok

16: parallel-la-boundary

17: eolr // - "x0a" more efficient to use |.|

18: *ok ok

19:)

20: @"c:/yacco2/compiler/grammars/yacco2_include_files.lex"
21:

22: rulesq{

23: Reol AD AB(O){

24: -> Rdelimiters {

25: rhs-op

26: CAbs_1lrl_sym* sym = new T_eol;

27: sym->set_rc(*parser () ->start_token() ,*parser());
28: sym->set_line_no_and_pos_in_line (*parser()->start_token());
29: RSVP (sym)

30: * kK

31: }

32: %}

33:

34: Rdelimiters AD ABO{

35: -> "xO0a"

36: -> "x0d" |.|

37: -> "x0d4" "xOa"

38: }

39: }// end of rules

40:

The above source listing is an example of a threaded grammar. Starting each source line is a line number
suffixed by " present only for discussion purposes. Line numbers 6-10 defines the fsm component. Lines
11-19 indicates that the grammar is a thread. Though the terminal vocabulary definitions are hidden by

811 02 0O9’S LANGUAGE 11

line 20, it illustrates the file include feature of O,. Lines 22-39 are the rule definitions. Each grammar’s
section has a defining keyword like “fsm”, “parallel-parser”, “rules” that introduces the part being defined.

12. C macros.

Originally there were conditionally defined trace variables that controlled the inclusion of trace code. This was
a pain-in-the-seat so now they are global variables that test their values. I felt the slight speed bump merited
the facility without the combinatorics of libraries needed for distribution. YACCO2_define_trace_variables
macro defines these global variables used by O’s tracing purposes. U can roll your own or just include the
macro in your code. These variables are dormant until their values are not zero. Without their inclusion, a
linker message of unresolved variable will be regurgitated: they must be present when using the O library.
It’s an easy way to define them within your program. Please see Os library documentation for a discussion
on each trace variable. To activate a specific tracing, assignment a non zero value to the selected trace
variable: set it to 1. Here is their catalogue:

YACCO2_T__ — trace terminal when fetched

YACCO2_TLEX__ — trace macros of emitted grammar: rules and user emergency macros
YACCO2_MSG__ — trace thread messages

YACCO2_MU_TRACING__ — trace acquire / release of trace mutex

YACCO2_MU_TH_TBL__ — trace acquire / release mutex of thread table
YACCO2_MU_GRAMMAR__ — trace acquire / release each grammar’s mutex

YACCO2_TH__ — trace the parse stack: fsa and syntax directed activities

YACCO2_AR__ — trace arbitrator procedure

YACCO2_THP__ — trace thread performance

They are enrobed by namespace yacco2. To set the trace variable be sure the namespace is delared: either
explicitly as in:

yacco?2 ::YACCO2_T__ = 1;
or implicitly by a “using namespace yacco2;” statement somewhere preceding the assignment:

using namespace yacco2;

YACCO2_T__ = 1;

Each traced output line identifies its type by the trace variable turned on. As tracing can be very very
volumnious, post evaluating the output thru a Bash type filter script makes the log output manageable. I
say this from experience as some editors blow up due to the size of the traced file. Names withheld to protect
the innocent.

12 EXTERNAL ROUTINES AND GLOBALS 02 813

13. External routines and globals.
General routines to get things going:
1) get control file and put into Oy’s holding file
2) parse the command line
3) format errors
4) Oy’s parse phrases — pieces of syntactic structures
These are defined by including 02_externs.h. Item 4 is driven out of the pass3.lex grammar. It demonstrates
a procedural approach similar to recursive descent parsing technique.
The globals are:
a) Error_queue — global container of errors passed across all parsings
b) Switches from command line parse
c¢) Token containers for the parsing phases

(External rtns and variables 13) =
extern int RECURSION_INDEX__;
extern void COMMONIZE_LA_SETS();
extern int NO_LR1_STATES;
extern STATES_SET. typeVISITED_MERGE_STATES_IN_LA_CALC;
extern LRI1_STATES typeLR1_COMMON_STATES;
extern CYCLIC_USE_TBL_typeCYCLIC_USE_TABLE;
extern void Print_dump_state(state x State);

This code is used in section 163.

814 02 MAIN LINE OF Oy 13

14. Main line of O,.

(accrue Oy code 14) =
YACCO2_define_trace_variables(); /* Recursion_count(); */
int RECURSION_INDEX__(0);
yacco2 :: CHART_SW(’n’);
yacco2 :: CHARERR_SW(’n’);
yacco2 :: CHARPRT_SW(’n’);
yacco? :: TOKEN_GAGGLE JUNK _tokens;
yacco? :: TOKEN_GAGGLE P3_tokens;
yacco? :: TOKEN_GAGGLE Error_queue;

char Big_buf [BIG_BUFFER_32K];

T_sym_tbl_report_card report_card;

std :: string 02_file_to_compile;

std :: string 02_fq_fn_noext;
STBL_T_ITEMS_type STBL_T_ITEMS;
STATES _typeLR1_STATES;
LR1_STATES typeLR1_COMMON_STATES;

bool LR1_HEALTH(LR1_COMPATIBLE);
int NO_LR1_STATES(0);

STATES_SET _typeVISITED_MERGE_STATES_IN_LA_CALC;
CYCLIC_USE_TBL_typeCYCLIC_USE_TABLE;

int main(int argc, char xargv|])
{
cout K yacco? :: Lr1_VERSION < std ::endl;
(setup O for parsing 17);
(fetch command line info and parse the 3 languages 19);
lrclog < yacco?2 :: Lr1_VERSION < std::endl;
(are all phases parsed? 34);
epsilon and pathological assessment of Rules 29);
dump aid: enumerate grammar’s components 28);
determine if la expression present. Yes parse it 35);
get total number of subrules for elem_space size check 31);
calculate rules first sets 32);
calculate Start rule called threads first sets 33);
generate grammar’s LR1 states 39);
is the grammar unhealthy? yes report the details and exit 40);
determine each rule use count 37);
emit FSA, FSC, and Documents of grammar 130); /* (print tree 132); */
/* (shutdown 16); */
exit: Irclog < "Exiting 02" < std::endl;
return 0;

}

See also section 162.

(
(
(
(
(
(
(
(
(
(

This code is used in section 164.

14 SOME PROGRAMMING SECTIONS 02 §15

15. Some Programming sections.

16. Shutdown.

Prints out the thread table with their runtime activity, and calls each one of them to quitely remove
themselves as threads. Within Unix this is not needed as the winddown duties of the process removes
launched threads: That is why it is commented out. Uncommenting it provides the run statistics for the
compiler writer to view reality in terms of performance stats.

(shutdown 16) =
Irclog < "Before thread shutdown" < std::endl;
yacco2 :: Parallel_threads_shutdown (pass3);
Irclog < "After thread shutdown" < std::endl;

This code is cited in section 14.

17. Setup O- for parsing.

(setup Oq for parsing 17) =
(load O2’s keywords into symbol table 18);

This code is used in section 14.

18. Load Os’s keywords into symbol table.
Basic housekeeping. Originally a grammar recognized keywords by being in competition with the Identifier
thread. Keyword thread only ran if its first set matched the starting character making up an identifier and
keyword. Now it’s blended into Identifier using the symbol table lookup that returns not only the identifier
terminal but all other keyword entries put into the symbol table.

For now, only the keywords are cloned off as unique entities whilst all other entries are passed back from
their symbol table with its source co-ordinates being overriden.

(load Os’s keywords into symbol table 18) =
LOAD_YACCO2_KEYWORDS_INTO_STBL();

This code is used in section 17.

19. Fetch command line info and parse the 3 languages.
The 3 separate languages to parse are:
1) fetching of the command line to place into a holding file
2) the command line in the holding file — grammar file name and options
3) the grammar file’s contents
Items 1 and 2 are handled by external routines where fetching of the command line is crude but all-purpose
whilst the command line language is specific to Os.

(fetch command line info and parse the 3 languages 19) =
(get command line, parse it, and place contents into a holding file 20);
(parse command line data placed in holding file 22);
(parse the grammar 26);

This code is used in section 14.

20. Get command line, parse it, and place contents into a holding file. It uses a generic external
routine to do this. The parse is very rudimentary. The command data is placed into a holding file provided
by Yacco2_holding_file defined in the external library o2_externs.h. See cweb documents mentioned in the
introduction regarding other support libraries. If the result is okay, set up Os’s library files for tracing.

(get command line, parse it, and place contents into a holding file 20) =
GET_CMD_LINE(argc, argv, Yacco2-holding_file, Error_queue);
(if error queue not empty then deal with posted errors 21);

This code is used in section 19.

821 02 DO WE HAVE ERRORS? 15

21. Do we have errors?. Check that error queue for those errors. Note, DUMP_ERROR_QUEUE will also
flush out any launched threads for the good housekeeping or is it housetrained seal award? Trying to do my
best in the realm of short lived winddowns.

(if error queue not empty then deal with posted errors 21) =
if (Error_queue.empty () # true) {
DUMP_ERROR_QUEUE (Error_queue);
return 1;

}

This code is used in sections 20, 22, 26, 34, 36, 118, 119, 120, 121, 122, 123, 124, and 125.

22. Parse command line data placed in holding file.

(parse command line data placed in holding file 22) =
YACCO2_PARSE_CMD_LINE(T_SW,ERR_SW, PRT_SW, 02_file_to_compile, Error_queue);
(if error queue not empty then deal with posted errors 21);

(display to user options selected 25);
(extract fq name without extension 23);
(set up logging files 24);

This code is used in section 19.

23. Extract fully qualified file name to compile without its extension.
Used to access the generated first set control file for cweb documentation and Os’s tracings. Simple check,
if the grammar file name does not contain a “.extension” then use the complete file name.

(extract fq name without extension 23) =
std :: string :: size_type pp = 02_file_to_compile.rfind (’ .’);
if (pp = std:: string ::npos) {
02_fq_fn_noext += 02_file_to_compile;
}
else {
02_fq_fn_noext += 02_file_to_compile.substr (0, pp);

}

This code is used in section 22.

24. Set up Os’s logging files local to the parsed grammar.
There are 2 stages. Stage 1 logs to “llrerrors.log” and “llrtracings” as the command line is being parsed
— 02_lcl_opts and 02_lcl_opt grammars. It has no knowledge of the grammar file to parse. Stage 2 passed
the command line parsing and the inputted grammar file name can be used to build the grammar’s local O
tracing files. These log files are “xxx_tracings.log” and “xxx_errors.log” where the “xxx” is the grammar’s
base file name.
(set up logging files 24) =

std :: string normal_tracing (02-fq_fn_noext.c_str());

normal_tracing += "_tracings.log";
std :: string error_logging (02_fq_fn_noext .c_str());
error_logging += " _errors.log";

yacco2 ::lrclog.close();

yacco? :: lrerrors.close();

yacco? ::lrclog.open (normal_tracing.c_str());
yacco2 :: lrerrors.open (error_logging .c_str());

This code is used in section 22.

16 DISPLAY TO USER OPTIONS SELECTED 02 §25

25. Display to user options selected.

(display to user options selected 25) =
lrclog < "Parseoptions selected:" < std::endl;
lrclog < ", Gen T:)" < T_SW;
lrclog < ", Gen Err: " < ERR_SW;
lrclog < " ,Gen RC:," < PRT_SW;

This code is used in section 22.

26. Parse the grammar.
Due to the syntax directed code not having legitimate grammars to parse it, a character-at-a-time parsing
approach is used. This is a lexical and syntactic mix of parsing instead of your separate lexical, syntax parse
stages. Why? T’ll use a question as an answer. How do you recognize the “*** directive to end a c++ syntax
directed code portion that is an unstructured sequence of characters? Well crawl at a character’s pace per
prefix accessment. This is why the bluring between lexical and syntatical boundaries. So walk-the-walk-
and-talk of a lexical parser using recursive descent (for its single call of fame containing a bottom-up parse)
tripped off by a bottom-up syntax directed code. What a mouthfull! Should mother use soap and a tooth
brush to punish the child? Who is this mother anyway?

Within the pass3.lex grammar are procedure calls containing the parse phases. FEach phase is called
from within the syntax-directed-code of the recognized keyword: “fsm”,“ rules”, etc. This demonstrates a
bottom-up / top-down approach to parsing. Options are what it’s all about. What’s your choice?

(parse the grammar 26) = /* yacco2 ::YACCO2_TH__ = 1; x/ /* yacco2 ::YACCO2_MSG__ = 1; */
using namespace NS_pass3;

tok_can < std ::ifstream > cmd_line (02-file_to_compile.c_str());

Cpass3 p3_fsm;

Parserpass3 (p3-fsm, &cmd_line, & P3_tokens, 0, & Error_queue , & JUNK _tokens, 0);
pass3 .parse();

(if error queue not empty then deal with posted errors 21);

(dump lexical and syntactic’s outputted tokens 27);

This code is used in section 19.

27. Dump lexical and syntactic’s outputted tokens.

(dump lexical and syntactic’s outputted tokens 27) =
yacco? :: TOKEN_GAGGLE_ITER: = P3_tokens.begin();
yacco? :: TOKEN_GAGGLE_ITERie = P3_tokens.end();
lrclog < "Dump,0f P3_tokons" < endl;
for (int yyy = 1; i # ie; ++i) {

CAbs_lri_sym * sym = xi;

if (sym = yacco2:: PTR_.LR1_eog__) continue;

Irclog < yyy < """ < sym~id__ < " file no: " < sym~tok_co_ords__.external_file_id__ <
"Uline no: " < sym~tok_co_ords__.line_no__ < " pos: " <K sym-tok_co_ords__.pos_in_line__ <K
endl;

Yyy;

}

This code is used in section 26.

§28 02 DUMP AID — ENUMERATE GRAMMAR’S COMPONENTS 17

28. Dump aid — Enumerate grammar’s components.
As a reference aid to a grammar’s components, each component has an enumerate value of “x.y.z” where x
stands for the rule number, y is its subrule number, and z is the component number. The grammar’s enumer-
ated elements are “rule-def”, “subrule-def”, and components “refered-rule”, “refered-T”, and “eosubrule”.
The “rules-phrase” is not enumerated as it just ties all the forests together. An enumerate example is “1”
standing for the Start rule. “1.2.2” goes to its 2nd subrule of component 2.

The grammar is read whereby all its forests are enumerated relative to one another.

(dump aid: enumerate grammar’s components 28) =
’ set<int>_enumerate_filter;
enumerate_filter .insert(T-Enum :: T_rule_def_);
enumerate_filter .insert (T_Enum :: T_T_subrule_def-);

enumerate_filter .insert (T_Enum :: T_refered_T.);

(

(

(

enumerate_filter .insert (T-Enum :: T_T_eosubrule.);
enumerate_filter .insert (T_Enum :: T_refered_rule_);
enumerate_filter .insert(T_Enum :: T_T_called_thread_eosubrule_);
enumerate_filter .insert (T_Enum :: T_T_null_call_thread_eosubrule_);

using namespace NS_enumerate_grammar;

tok_can_ast_functor walk_the_plank_mate;

ast_prefiz enumerate_grammar-walk (xrules_tree , &walk_the_plank_mate, & enumerate_filter , ACCEPT_FILTER);
tok_can < AST x> enumerate_grammar_can (enumerate_grammar_walk);

Cenumerate_grammar enumerate_grammar_fsm;

Parser enumerate_grammar (enumerate_grammar_fsm , & enumerate_grammar_can, 0, 0, & Error_queue);
enumerate_grammar .parse ();

This code is used in section 14.

18 EPSILON AND PATHOLOGICAL ASSESSMENT OF RULES 02 §29

29. Epsilon and Pathological assessment of Rules.

Epsilon condition:

Rule contains an empty symbol string in a subrule. The only subtlety is when a rule has a subrule(s) con-
taining all rules. If all the rules within that subrule are epsiloned, then this subrule is an epsilon and so turn
on its rule as epsilonable.

Pathological Rule assessment:
Does a rule derive a terminal string? The empty string is included in this assessment. epsilon_rules grammar

tells the whole story.

Note:
The tree is walked using discrete levels: Rules and Subrules. The subrule’s elements are filtered out (not
included) for the discrete rule traversal but is added within the rule’s syntax directed code logic a subrule’s
element advancement. Element advancement bypasses the thread component expression. These are neat
facilities provided by Os using the tok_can tree traversal containers.
(epsilon and pathological assessment of Rules 29) =

using namespace NS_epsilon_rules;

set<AST*>_ yes_pile;
set<AST*> mno_pile;
list< pair<ASTx*,AST*> > maybe_list;
T_rules_phrase * rules_ph = 02_RULES_PHASE;
AST * rules_tree = rules_ph~phrase_tree();
’set<int>ufilter;
filter insert (T_Enum :: T-T_subrule_def-);

filter .insert (T_Enum :: T_rule_def.);

tok_can_ast_functor just_walk_functr;

ast_prefiz rule_walk (xrules_tree , &just_walk_functr, & filter | ACCEPT_FILTER);
tok_can < AST %> rules_can (rule_walk);

Cepsilon_rules epsilon_fsm;

Parser epsilon_rules (epsilon_fsm, &rules_can, 0,0, & Error_queue);
epsilon_rules.parse();

(Print pathological symptoms but continue 30); /x (print tree 132); */

This code is used in section 14.

30. Print pathological symptoms but continue.

(Print pathological symptoms but continue 30) =
if (Error_queue.empty () # true) {
DUMP_ERROR_QUEUE (Error_queue);
Error_queue.clear();
return 1;

}

This code is used in section 29.

§31 02 GET THE TOTAL NUMBER OF SUBRULES 19

31. Get the total number of subrules.

I'm lazy and don’t want to distribute the count as the individual rules are being parsed so do it via the
a tree walk on subrules. Why do it anyway? I've hardwired the elem_space table size against a constant
Maz_no_subrules. Why not allocate the table size dynamicly? Glad u asked as the malloc approach burped.
Maybe there’s mixed metaphores on malloc versus how the C++ new / delete allocation is done. Anyway
this works and is reasonable.

(get total number of subrules for elem_space size check 31) =
’set<int>usr_filter;‘
sr_filter .insert (T_Enum :: T_T_subrule_def-);
ast_prefic sr_walk (xrules_tree, &just_walk_functr, &sr_filter , ACCEPT_FILTER);
tok_can < AST %> sr_can (sr-walk);
for (int zz(0); sr_can|zz] # yacco2 :: PTR_LR1 _eog__; ++xz) ;
02_T_ENUM_PHASE-~total_no_subrules (sr_can.size());
if (02_T_ENUM_PHASE-total-no_subrules() > Maz_no_subrules) {
Irclog < "Grammar’s number of subrules: " < 02_T_ENUM_PHASE-total_no_subrules() <
"exceeds the allocated space_ for table_ elem_space: " < Maz_no_subrules < endl;
lrclog < "This is a big grammar so please correct,the grammar." < std::endl;
clog < "Grammar’s number of subrules: " < 02_T_ENUM_PHASE-total_-no_subrules() <
"_exceeds the allocated space_ for table_ elem_space: " < Maz_no_subrules < endl;
clog < "Thisyisya big grammar so please correct the grammar." < std:: endl;
return 1;

}

This code is used in section 14.

32. Calculate each rule’s first set.
Lov the discrete logic of a grammar to code algorithms. See first_set_rules grammar as it’s really is simple in
its logic: i'm getting there from all corners of the coding world. Not any more as i’'m pruning the overhead
so out my drafty thoughts and this grammar first_set_rules. Just iterate over the grammar tree for filtered
rule_def nodes only.
(calculate rules first sets 32) =
’set<int>ufs_filter;‘
fs_filter .insert (T-Enum :: T-rule_def-);
ast_prefizx fs_rule_walk (xrules_tree , &just_walk_functr, &fs_filter , ACCEPT_FILTER);
tok_can < AST %> fs_rules_can (fs_rule_walk);
for (int zz(0); fs_rules_can|zz] # yacco2:: PTR_LR1 _eog__; ++xx) {
’rule_def*urdu=|_,(rule_def*)fs_rules_can [xx];
GEN_FS_OF_RULE(rd);

}

This code is used in section 14.

33. Calculate Start rule’s called threads first set list.

It calculates the “called threads” first set for the “to be emitted xxx.fsc” file. The neat wrinkle is the
epsilonable rule that requires same transience left-to-right moves thru the subrule expressions. This is
fodder to Ofmkerthat builds each thread’s first set from the “list-of-native-first-set-terminal” and “list-of-
transitive-threads” constructs. The final outcome of OY™#¢"is an optimized list of threads per terminal. The
calculation goes across the Start rule and its closured rules to determine the list of called threads. This list
can be ¢ . In the “Start rule” is the contents for “list-of-transitive-threads”.

(calculate Start rule called threads first sets 33) =
rule_def * start_rule_def = (rule_def x) fs_rules_can.operator[](0);
GEN_CALLED_THREADS_FS_OF_RULE(start_rule_def);

This code is used in section 14.

20 ARE ALL GRAMMAR PHASES PARSED? 02 834

34. Are all Grammar phases parsed?.

As i parse the individual phrases by their keyword presence without using a grammar to sequence each phase,
now is the time to see if all the parts are present in the grammar. This is a simple iteration on the posted
02_PHRASE_TBL to fetch their phrase terminals and to put them thru a post grammar sequencer.

I changed how the tokens are fetched from fill the container by iterating the O2_zzx phases to reading
the grammar’s tree. Why? Cuz i implicitly changed to on-the-fly enumeration of their values while they
were being parsed. If their order was changed then their appropriate enumerates are out-of-alignment. For
example if the raw character classification came before the “Irk” definitions, this would be catastrophic due
to the down stream semantics’ dependency on their correct enumerates.

A bird’s view of O3’s phases: indent shows node’s dependency
::1 grammar-phrase grammar-phrase file 2:0: line 24:4: sym*: 0122B598
::2 fsm-phrase fsm-phrase file 2:766: line 24:4: sym™*: 01220BA0
::3 T-enum-phrase T-enum-phrase file 4:1069: line 32:14: sym*: 01272500
::4 Irl-k-phrase Irl-k-phrase file 5:1727: line 44:21: sym*: 011F0360
::5 re-phrase re-phrase file 6:303: line 13:15: sym*: 01270C98
::6 error-symbols-phrase error-symbols-phrase file 7:1026: line 34:14: sym*: 0257F388
::7 terminals-phrase terminals-phrase file 8:474: line 15:10: sym*: 011F1458
::8 rules-phrase rules-phrase file 2:1708: line 60:6: sym™*: 02FB3AAS8
Notice i walk the tree by ast_prefiz_wbreadth_only. This visits the start node “grammar-phrase” and only its
immediate children by the “breadth-only” qualifier.

(are all phases parsed? 34) =
’ set<int> jphase_order_filter;
phase_order_filter .insert (T_Enum :: T_T_fsm_phrase_);
phase_order_filter .insert (T-Enum :: T_T_enum_phrase.);
phase_order_filter .insert (T-Enum :: T_T_lr1_k_phrase_);
phase_order_filter .insert (T_-Enum :: T-T_rc_phrase_);
(
(

phase_order_filter .insert (T_Enum :: T_T_error_symbols_phrase_);

phase_order_filter .insert (T_Enum :: T_T_terminals_phrase_);

phase_order_filter .insert (T-Enum :: T_T_rules_phrase_);

tok_can_ast_functor orderly_walk;

ast_prefiv_wbreadth_only evaluate_phase_order (*«GRAMMAR_TREE, & orderly_walk , & phase_order_filter,
ACCEPT_FILTER);

tok_can < AST x> phrases_can(evaluate_phase_order);

using namespace NS_eval_phrases;

Ceval_phrases eval_fsm;

Parser eval_phrases (eval_fsm, &phrases_can, 0,0, & Error_queue, 0, 0);
eval_phrases.parse();

(if error queue not empty then deal with posted errors 21);

This code is used in section 14.

835 02 THREAD’S END-OF-TOKEN STREAM: LOOKAHEAD EXPRESSION POST EVALUATION 21

35. Thread’s end-of-token stream: Lookahead expression post evaluation.

If the grammar contains the ‘parallel-parser’ construct, then it is considered a thread. As a refinement, this
construct allows one to fine-tune the lookahead boundaries of the grammar in its own contextual way. As
this construct is declared before the grammar’s vocabulary definitions — rules and terminals, the expression
must be kept in raw character token format with some lexems removed like comments. Only after all the
grammar has been recognized can the lookahead expression be parsed properly: the terms in the expression
must relate to T-in-stbl, rule-in-stbl, and the 4+ or — expression operators.

Squirrelled away in the ‘parallel-parser’ terminal is the raw token stream of the lookahead expression. The
strategy used is to fetch the appropriate parsed phase token from the Os phase table and then deal with its
locally defined pieces of information. Originally these parse phases were kept in the global symbol table but
now they are contained in its own table. Why? Well how do u guard against a grammar writer defining a
terminal whose key could be a synomyn to one of my internal parse phases? Regardless of how clever one is
to naming keys, separation between my internal tables and the global symbol table has a 100% assurance of
no conflict.

First set Criteria:

1) Element is a Terminal, use its calculated enumeration value
2) If the element is eolr, then use all calculated enumeration values
3) Element is a Rule, use its calculated First set terminals

Before the Lookahead first set can be calculated, the terminal vocabulary must be traversed and assigned
an enumeration value per terminal. The grammar’s rules must also have their first sets calculated before the
lookahead expression can be calculated.

The lookahead logic within its grammar(s) is two fold:

a) parse the lookahead expression for kosher syntax

b) calculate the lookahead’s first set from the expression
The error checks are for an ill-formed expressions, and for an empty first set calculation: for example, ‘a’ -
‘a’, or ‘b’ - ‘eolr’, and epsilon Rules used in the lookahead expression. This calculated first set is then used
down stream in the finite state automata (FSA) generation of the grammar.

(determine if la expression present. Yes parse it 35) =
if (02_PP_PHASE # 0) {
(parse la expression and calculate its first set 36);

}

This code is used in section 14.

22 PARSE THE LA EXPRESSION AND CALCULATE ITS FIRST SET 02 836

36. Parse the la expression and calculate its first set.

(parse la expression and calculate its first set 36) =
T_parallel_parser_phrase x pp_ph = 02_PP_PHASE;
if (pp_ph-la_bndry() =0) {
CAbs_lri_sym * sym = new Err_pp_la_boundary_attribute_not_fnd;
sym~set_rc(xpp_ph);
Error_queue.push_back (xsym);
(if error queue not empty then deal with posted errors 21);

T_parallel_la_boundary * la_bndry = pp_ph~la_bndry();

yacco2 :: TOKEN_GAGGLE x la_srce_tok_can = la_bndry~la_supplier();
yacco? :: TOKEN_GAGGLEla_tok_can_lex;

yacco? :: TOKEN_GAGGLEla_expr_tok_can;

using namespace NS_la_expr_lexical;

Cla_expr_lexical la_expr_lex_fsm;

Parserla_expr_lex_parse(la_expr_lex_fsm, la_srce_tok_can, &la_tok_can_lex, 0, & Error_queue,
& JUNK _tokens,0);

la_expr_lex_parse.parse();

(if error queue not empty then deal with posted errors 21);

using namespace NS_la_expr;

Cla_exprla_expr_fsm;

Parserla_expr_parse (la_expr_fsm, &la_tok_can_lex , &la_expr_tok_can, 0, & Error_queue, & JUNK _tokens, 0);
la_expr_parse.parse();

(if error queue not empty then deal with posted errors 21);

This code is used in section 35.

37. Determine rule use count: Optimization.

To improve performance, the rules (Productions) symbols are newed once and recycled when needed. To
ensure that there are enough recycled rules available, the gramar is traversed and their uses counted. If
recursion is present within the rule, this adds one more use. The grammar tree is traversed looking only for
“rule-def”, “subrule-def”, and “refered-rule” tokens.

(determine each rule use count 37) =
lrclog < "Evaluate rules count" < endl;

using namespace NS_rules_use_cnt;

’set<int>uru1es_use_cnt_filter;
rules_use_cnt_filter insert (T-Enum :: T-T_subrule_def-);

rules_use_cnt_filter .insert (T-Enum :: T_rule_def-);

rules_use_cnt_filter insert (T_-Enum :: T_refered_rule.);

tok_can_ast_functor rules_use_walk_functr;

ast_prefix rules_use_walk (*xGRAMMAR_TREE, &rules_use_walk_functr, &rules_use_cnt_filter , ACCEPT_FILTER);
tok_can < AST x> rules_use_can(rules_use_walk);

Crules_use_cntrules_use_cnt_fsm;

Parserrules_use_cnt (rules_use_cnt_fsm, &rules_use_can, 0,0, & Error_queue);

rules_use_cnt.parse();

This code is used in section 14.

838 02 GENERATE GRAMMAR’S LR1 STATES 23

38. Generate grammar’s LR1 states.
The global Ir states list LR1_STATES is added to dynamicly as each closure state/vector gens their states.
LR1_HEALTH is the diagnostic of the parsed grammar.

39. Driver generating Irl states.
Goes thru the Ir state list looking for closure states to gen. Note: a closure state gens its transitive states.
A part from the “closure only” state (start state), all other states contain 2 contexts: transitive core items,
and possibly added to closured items. As the list is read, it evaluates the possible state for gening by seeing
if there are closured items needing to be gened. There are 3 possible outcomes to this evaluation:

1) items not gened: goto of item is nil.

2) items completed due to right boundedness from a previous gen closure state / vector context.

3) partially gened items due to common prefix of a previous closure state/vector context.
Point 1 + 3 need gening. Point 1 is your regular generation context. Point 3 requires walking thru its right
side symbols to where its goto state needs gening (nil). From there its gening proceeds as normal within its
own closure state/vector context.

During each state closure part/vectors pass, Ir kosherness is tested within each closure state/vector gening
context. A non Ir(1) verdict is returned immediately within the gening closure state/vector context. The
balance of the closure state/vectors to gen are not completed.

(generate grammar’s LR1 states 39) =
AST x start_rule_def_-t = AST :: get_1st_son (xrules_tree);
state x gening_state = new state (start_rule_def-t);
gen_context gening_context (0, —1);
STATES_ITER type si = LR1_STATES.begin ();
STATES_ITER_ type sie = LR1_STATES.end();
/x list added to dynamicly as each gening context created */
for (; si # sie; ++si) {
gening_state = %si;
gening_context.for_closure_state. = gening_state;
gening_context.gen_vector- = —1;
lrclog < "1r_ state_ driver considered state: " < gening_context.for_closure_state_~state_no_ <
" for vector: " <K gening_context.gen_vector- < endl;
LR1_HEALTH = gening_state~gen_transitive_states_for_closure_context (gening_context , *gening_state
kgening-state);
if (LR1_HEALTH = NOT_LR1_COMPATIBLE) {
(is the grammar unhealthy? yes report the details and exit 40);
}

) /* (print dump state 135); */
(commonize la sets 41); /* please put back at sign if u want to trace %/
/* (print dump state 135); */ /* (print dump common states 134); */

This code is used in section 14.

24 IS THE GRAMMAR UNHEALTHY? YES REPORT THE DETAILS AND EXIT 02 840

40. Is the grammar unhealthy? yes report the details and exit.

(is the grammar unhealthy? yes report the details and exit 40) =
if (LR1_HEALTH = NOT_LR1_COMPATIBLE) {

yacco2 ::lrclog < "===>Please chec